COGS 121
HCI Programming Studio
Week 03 - Tech Lecture
• Assignment #1 extended to Monday night 11:59pm

• Assignment #2 to be released on Tuesday during lecture
Database Management Systems and SQL

Week 03 - Tech Lecture
References and Acknowledgments

https://pgexercises.com

Prof. A. Vaisman (U Toronto)
What Is a DBMS?

• A very large, integrated collection of data describing activities of organizations.

• Models real-world.

 • Entities (e.g., students, courses)

 • Relationships (e.g., Madonna is taking CS564)

• A Database Management System (DBMS) is a software package designed to store and manage databases.
Why Use a DBMS?

• Data independence and efficient access.
• Reduced application development time.
• Data integrity and security. Different users may access different data subsets.
• Uniform data administration.
• Concurrent access, recovery from crashes.
Describing Data: Data Models

- A data model is a collection of concepts and constructs for describing data.

- A schema is a description of a particular collection of data, using the a given data model.

- The relational model of data is the most widely used model today.
 - Main concept: relation, basically a table with rows and columns.
 - Every relation has a schema, which describes the columns, or fields.
The Relational Model (Introduction)

• Central construct: the RELATION : a set of records.

• Data is described through a SCHEMA specifying the name of the relation, and name and type of each field:

 • Students(pid: string, name: string, login: string, age: integer, gpa: real)

• Actual data: instance of the relations : a set of tuples, v.g.: {<53666, Jones, jones@cs, 18, 3.4>,
 <53688, Smith, smith@ee, 18, 3.2>,
 <53650, Smith, jones@math, 19, 3.8>, ...}
Example: University Database

- **Conceptual schema:**
 - Students(pid: string, name: string, login: string, age: integer, gpa: real)
 - Courses(cid: string, cname: string, credits: integer)
 - Enrolled(pid: string, cid: string, grade: string)

 —> describes data in terms of the data model of the DBMS

- **Physical schema:**
 - Relations stored as unordered files.
 - Index on first column of Students.

- **External Schema (View):**
 - Course_info(pid: string, enrollment: integer)
Querying a DBMS

• A DBMS provides a Query Language.

• Query languages allow querying and updating a DBMS in a simple way.

• Most popular DML (Data Manipulation Language) : **SQL** (Structured Query Language).

• Queries:
 - List the name of student with pid=A0967546
 - Name and age of students enrolled in COGS121
Basic SQL

- SQL language
 - Considered one of the major reasons for the commercial success of relational databases

- SQL
 - Structured Query Language
 - Statements for data definitions, queries, and updates (both DDL and DML)
 - Core specification
 - Plus specialized extensions
SQL Data Definition and Data Types

• Terminology:

 • **Table**, **row**, and **column** used for relational model terms relation, tuple, and attribute

• **CREATE** statement

• Main SQL command for data definition
Schema and Catalog Concepts in SQL

- SQL schema
 - Identified by a schema name
 - Includes an authorization identifier and descriptors for each element
- Schema elements include
 - Tables, constraints, views, domains, and other constructs
- Each statement in SQL ends with a semicolon
CREATE TABLE EMPLOYEE
 (Fname VARCHAR(15) NOT NULL,
 Minit CHAR,
 Lname VARCHAR(15) NOT NULL,
 Ssn CHAR(9) NOT NULL,
 Bdate DATE,
 Address VARCHAR(30),
 Sex CHAR,
 Salary DECIMAL(10,2),
 Super_ssn CHAR(9),
 Dno INT NOT NULL,
 PRIMARY KEY (Ssn),
 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),
 FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE DEPARTMENT
 (Dname VARCHAR(15) NOT NULL,
 Dnumber INT NOT NULL,
 Mgr_ssn CHAR(9) NOT NULL,
 Mgr_start_date DATE,
 PRIMARY KEY (Dnumber),
 UNIQUE (Dname),
 FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

CREATE TABLE DEPT_LOCATIONS
 (Dnumber INT NOT NULL,
 Dlocation VARCHAR(15) NOT NULL,
 PRIMARY KEY (Dnumber, Dlocation),
 FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber));
Attribute Data Types and Domains in SQL

• Basic data types
 • Numeric data types
 • Integer numbers: INTEGER, INT, and SMALLINT
 • Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION
 • Character-string data types
 • Fixed length: CHAR(n), CHARACTER(n)
 • Varying length: VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n)
Attribute Data Types and Domains in SQL

- Bit-string data types
 - Fixed length: BIT(n)
 - Varying length: BIT VARYING(n)
- Boolean data type
 - Values of TRUE or FALSE or NULL
- DATE data type
 - Ten positions
 - Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD
Attribute Data Types and Domains in SQL

• Additional data types
 • Timestamp data type (TIMESTAMP)
 • Includes the DATE and TIME fields
 • Plus a minimum of six positions for decimal fractions of seconds
 • Optional WITH TIME ZONE qualifier
• INTERVAL data type
 • Specifies a relative value that can be used to increment or decrement an absolute value of a date, time, or timestamp
CREATE TABLE PROJECT
 (Pname VARCHAR(15) NOT NULL,
 Pnumber INT NOT NULL,
 Plocation VARCHAR(15),
 Dnum INT NOT NULL,
 PRIMARY KEY (Pnumber),
 UNIQUE (Pname),
 FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE WORKS_ON
 (Essn CHAR(9) NOT NULL,
 Pno INT NOT NULL,
 Hours DECIMAL(3,1) NOT NULL,
 PRIMARY KEY (Essn, Pno),
 FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
 FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
 (Essn CHAR(9) NOT NULL,
 Dependent_name VARCHAR(15) NOT NULL,
 Sex CHAR,
 Bdate DATE,
 Relationship VARCHAR(8),
 PRIMARY KEY (Essn, Dependent_name),
 FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));
Specifying Key and Referential Integrity Constraints

- **PRIMARY KEY** clause
 - Specifies one or more attributes that make up the primary key of a relation
 - `Dnumber INT PRIMARY KEY;`

- **UNIQUE** clause
 - Specifies alternate (secondary) keys
 - `Dname VARCHAR(15) UNIQUE;`
Specifying Key and Referential Integrity Constraints (cont’d.)

• **FOREIGN KEY** clause

 • Default operation: reject update on violation

 • Attach referential triggered action clause

 • Options include **SET NULL**, **CASCADE**, and **SET DEFAULT**

 • Action taken by the DBMS for SET NULL or SET DEFAULT is the same for both ON DELETE and ON UPDATE

 • **CASCADE** option suitable for “relationship” relations
Query Languages

<table>
<thead>
<tr>
<th>Employee</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Dept</td>
</tr>
<tr>
<td>Dept</td>
<td>Manager</td>
</tr>
</tbody>
</table>

SQL

```sql
SELECT Manager
FROM Employee, Department
WHERE Employee.name = "Clark Kent"
  AND Employee.Dept = Department.Dept
```
The SELECT-FROM-WHERE Structure of Basic SQL Queries

• Basic form of the SELECT statement:

 • SELECT <attribute list>

 • FROM <table list>

 • WHERE <condition>;

• where

 • <attribute list> is a list of attribute names whose values are to be retrieved by the query.

 • <table list> is a list of the relation names required to process the query.

 • <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by the query.
The SELECT-FROM-WHERE Structure of Basic SQL Queries (cont’d.)

• Logical comparison operators
 • =, <, <=, >, >=, and <>

• Projection attributes
 • Attributes whose values are to be retrieved

• Selection condition
 • Boolean condition that must be true for any retrieved tuple
Query 0. Retrieve the birth date and address of the employee(s) whose name is ‘John B. Smith’.

Q0: SELECT Bdate, Address
 FROM EMPLOYEE
 WHERE Fname='John' AND Minit='B' AND Lname='Smith';

Query 1. Retrieve the name and address of all employees who work for the ‘Research’ department.

Q1: SELECT Fname, Lname, Address
 FROM EMPLOYEE, DEPARTMENT
 WHERE Dname='Research' AND Dnumber=Dno;

Results of SQL queries when applied to the COMPANY database state shown in Figure 3.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

(a) | Bdate | Address |
 | | |
 | 1965-01-09 | 731 Fondren, Houston, TX |

(b) | Fname | Lname | Address |
 | | | |
 | John | Smith | 731 Fondren, Houston, TX |
 | Franklin | Wong | 638 Voss, Houston, TX |
 | Ramesh | Narayan | 975 Fire Oak, Humble, TX |
 | Joyce | English | 5631 Rice, Houston, TX |
Unspecified WHERE Clause and Use of the Asterisk

• Missing WHERE clause
 • Indicates no condition on tuple selection

• CROSS PRODUCT
 • All possible tuple combinations

Queries 9 and 10. Select all EMPLOYEE SsnS (Q9) and all combinations of EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn FROM EMPLOYEE;

Q10: SELECT Ssn, Dname FROM EMPLOYEE, DEPARTMENT;
Unspecified WHERE Clause and Use of the Asterisk

• Specify an asterisk (*)

• Retrieve all the attribute values of the selected tuples

Q1 C: SELECT * FROM EMPLOYEE WHERE Dno=5;

Q1 D: SELECT * FROM EMPLOYEE, DEPARTMENT WHERE Dname='Research' AND Dno=Dnumber;

Q10 A: SELECT * FROM EMPLOYEE, DEPARTMENT;
Ordering of Query Results

- Use `ORDER BY` clause

 - Keyword `DESC` to see result in a descending order of values

 - Keyword `ASC` to specify ascending order explicitly

 - `ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC`
Substring Pattern Matching and Arithmetic Operators

- **LIKE** comparison operator
 - Used for string **pattern matching**
 - \% replaces an arbitrary number of zero or more characters
 - underscore (_), replaces a single character
- Standard arithmetic operators:
 - Addition (+), subtraction (−), multiplication (∗), and division (/)
- **BETWEEN** comparison operator
Aggregate Functions in SQL

- Used to summarize information from multiple tuples into a single-tuple summary

- **Grouping**
 - Create subgroups of tuples before summarizing

- Built-in aggregate functions
 - `COUNT`, `SUM`, `MAX`, `MIN`, and `AVG`

- Functions can be used in the `SELECT` clause or in a `HAVING` clause
Grouping: The GROUP BY and HAVING Clauses

- Partition relation into subsets of tuples
 - Based on grouping attribute(s)
 - Apply function to each such group independently

- GROUP BY clause
 - Specifies grouping attributes

- If NULLs exist in grouping attribute
 - Separate group created for all tuples with a NULL value in grouping attribute
INSERT, DELETE, and UPDATE Statements in SQL

- Three commands used to modify the database:
 - INSERT, DELETE, and UPDATE
The INSERT Command

- Specify the relation name and a list of values for the tuple

```sql
U1: INSERT INTO EMPLOYEE
VALUES ('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98 Oak Forest, Katy, TX', 'M', 37000, '653298653', 4);

U3B: INSERT INTO WORKS_ON_INFO (Emp_name, Proj_name, Hours_per_week)
SELECT E.Lname, P.Pname, W.Hours
FROM PROJECT P, WORKS_ON W, EMPLOYEE E
WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;
```
The DELETE Command

- Removes tuples from a relation
- Includes a \texttt{WHERE} clause to select the tuples to be deleted

```
U4A: DELETE FROM EMPLOYEE WHERE Lname='Brown';
U4B: DELETE FROM EMPLOYEE WHERE Ssn='123456789';
U4C: DELETE FROM EMPLOYEE WHERE Dno=5;
U4D: DELETE FROM EMPLOYEE;
```
The UPDATE Command

- Modify attribute values of one or more selected tuples
- Additional **SET** clause in the **UPDATE** command
- Specifies attributes to be modified and new values

```
U5: UPDATE PROJECT
   SET Plocation = 'Bellaire', Dnum = 5
   WHERE Pnumber=10;
```
Let’s Play

- Download and Install PGAdmin

- Setup two databases
 - Tournament
 - host: ticino.ucsd.edu, port: 5432, database: cogs121
 - username: ‘cogs121’, password ‘sql4cogs121’, schema: cd
 - DELPHI:
 - host: delphidata.ucsd.edu, port: 5432, database: delphibetadb
 - username: ‘cogs121_16_user’, password ‘mcH8Yjs_n#2(xp’, schema: cogs121_16_raw
• username: ‘cogs121’
 password: ‘sql4cogs121’
 schema: cd

• username: ‘cogs121_16_user’
 password: ‘mcH8Yjs_n#2(xp’
 schema: cogs121_16_raw
pgAdmin Demo
TopHat Tournament