CHAPTER 4

SPATIAL STRUCTURES: MAPS

The 2012 "Wind Map" is a personal art project by Fernanda Viégas and Martin Wattenberg devised to visualize the wind as a source of energy. The project shows wind forces over the United States using data from the National Digital Forecast Database and is revised hourly. The varying weights of lines represent the velocity of the wind flows. The screenshot depicts a "living portrait" at a given date. Patterns are easily distinguished given the orientation and thickness of lines, which ultimately reveal the hidden geography.

http://hint.fm/wind

We encounter the term map, as well as the act of mapping in diverse fields of knowledge, all, however, with the shared characteristic of being "a diagram or collection of data showing the spatial distribution of something or the relative positions of its components."¹ The oldest (c. 1527), and perhaps the most frequent, use of the term map refers to representations of geographical data, ranging from the Earth's surface to parts of it.² Maps are used in other disciplines, such as genetics, in diagrammatic representations of the order and distance of the genes (see page 53), and in mathematics, as correspondences between two or more sets of elements. These are just two fields in which maps are frequently used.
This chapter focuses on thematic maps, which are representations of attribute data (quantitative and qualitative) on a base map. The latter is provided by the fixed positional data defined by geometry, such that spatial (geographic) relations are represented using locational reference systems (e.g., latitude/longitude, projections). In other words, and as the name suggests, thematic maps display a theme that can be a number of phenomena, such as social, political, economic, or cultural issues, with the purpose of revealing patterns and frequencies in the geography where they occur. As Robinson explains, “One of the major reasons for making a thematic map is to discover the geographical structure of the subject, impossible without mapping it, so as to relate the ‘geography’ of one distribution to that of others.”

“A New and Correct Chart Showing the Variations of the Compass in the Western & Southern Oceans as Observed in the Year 1700,” was created by Englishman Edmond Halley and published in 1701. It is the first known use of isolines.
BRIEF HISTORY

Thematic maps can be traced back to the second half of the seventeenth century, with large advances in the nineteenth century, when most graphical methods were devised between 1820 and 1860. Initially, thematic maps represented data in the natural sciences. The 1701 isoline map of the magnetic fields by the Englishman Edmond Halley (1656–1742) is considered the first of these. The portrayal of social phenomena appeared a century later, and the first modern statistical map is credited to Frenchman Charles Dupin (1784–1873), and his 1826 choropleth map of France displaying levels of education by means of shaded gray administrative areas. As data built up from environmental observations and measurements during the Enlightenment,” Robinson expounds, “attention shifted from place to space. Focus shifted from analytical concern with the position of features to holistic concern with the spatial extent and variation of features. Thus, the idea of distribution was born. The conceptual leap from place to space led to distributional representations called thematic maps.”

The enumeration of population was recorded during Egyptian, Greek, and Roman times, all of which used data primarily for administrative purposes, such as taxation. It is from the Romans, in fact, that the word census is derived from the Latin censere, “to estimate.” The systematic collection of social data started only in the late eighteenth century, with the first population census carried out by Sweden in 1749, followed by other countries, such as the United States in 1790, and France and England in 1801.

By 1870, most European countries, as well as the United States, were systematically collecting, analyzing, and disseminating official government statistics on population, trade, and social and political issues in publications such as statistical atlases, international expositions, and conferences. The International Statistical Congress, which met eight times between 1835 and 1875, served as an important international forum for the discussion and promotion of the use of graphical methods, as well as attempts to set forth international standards.

ADVANCES IN THE MID-1800S

Overall, the use of graphs for illustration and analysis outside the domains of mathematics and the physical sciences was rare prior to the mid-nineteenth century, despite the graphical inventions of William Playfair in the late 1700s (see page 93). The unprecedented development in the mid-1800s of graphic methods to analyze data in many ways was fueled by most countries’ recognition of the importance of numerical information in planning for the general welfare of the population (social, economic, etc).

A thematic map is concerned with portraying the overall form of a given geographical distribution. It is the structural relationship of each part to the whole that is important. Such a map is a kind of graphic essay dealing with the spatial variations and interrelationships of some geographical distribution.

Arthur H. Robinson
This period also marks the birth of new disciplines, such as statistics, geology, biology, and economics, to mention a few. New techniques developed by the emerging disciplines influenced each other as well as traditional fields like cartography, and led to advances in thematic maps that are examined in this chapter. For example, most innovations in graphical methods for statistical maps were devised by engineers and not by cartographers. As Friendly stresses, “What started as the ‘Age of Enthusiasm’ in graphics and thematic cartography, may also be called the ‘Golden Age,’ with unparalleled beauty and many innovations.”

As a side note, it is relevant to consider that we are currently experiencing a similar phenomenon powered by the collection of all sorts of digital data and the need to visually analyze them. Furthermore, we see the effect on several disciplines, from physics to biology, from political sciences to literature, all permeated by the growing field of data visualization.

MAP DESIGN

Visualizing data with maps involves making decisions in three basic areas: projection, scale, and symbolization. This chapter focuses on the latter, and a brief explanation follows with regard to the first two items. There is vast literature on map making, and further readings are strongly recommended. A list of the books used here as resources, together with other suggestions, can be found at the end of this book.

Map projections are mathematical transformations of the curved three-dimensional surface of the globe onto a flat, two-dimensional plane. All map projections involve transformations that result in distortions of one or more of the geometric properties of angles, areas, shapes, distances, and directions. Throughout the years, different projections have been devised for transposing the globe into the plane.

There are three basic *developable surfaces*—plane, cylinder, and cone—which result in three kinds of map grids—azimuthal, cylindrical, and conic. Distortion increases with the distances from the point or line of contact—tangent or secant—between the developable surface and the globe. For this reason, cartographers recommend cylindrical projections for continents around the equator (e.g., Africa, South America), conic projections for middle-latitude continents (e.g., Asia, North America), and azimuthal projections for polar regions.

There are a variety of projections for each developable surface. Choosing a map projection involves understanding the geometric properties that one needs preserved with minimized distortion.
PROJECTIONS

Robinson and colleagues warn, "There is no such thing as a bad projection—there are only good and poor choices." All map projections result in distortions of one or more of the geometric properties of angles, areas, shapes, distances, and directions. As illustrated on the right, some projections preserve areas but not local angles; all projections distort large shapes, some more than others; all projections distort some distances; and so on. Distortions should be taken into consideration when selecting the projection that best fits the purpose of the map.

The maps on this page use Tissot's indicatrix, a graphic device that illustrates distortion when circles change into ellipses. Changes in geometry indicate the amount of angular and/or areal distortion at any particular location in the map. The device was devised by French mathematician Nicolas Auguste Tissot in 1853.

The Mercator projection is conformal. Areas and shapes vary with latitude, especially away from the Equator, reaching extreme distortions in the polar regions. All indicatrices are circles as there are no angular distortion.

The equal-area cylindrical projection preserves area. Shapes are distorted from north to south in middle latitudes and from east to west in extreme latitudes.

In the Molleweide projection, shapes decrease in the north–south scale in the high latitudes and increase in the low latitudes, with the opposite happening in the east–west direction.

In the Robinson projection, all points have some level of shape and area distortion. Both properties are nearly right in middle latitudes.

The sinusoidal projection preserves area, such that areas on the map are proportional to same areas on the Earth. Shapes are obliquely distorted away from the central meridian and near the poles.
For example, in 1569, the Flemish cartographer and mathematician Gerhardus Mercator (1512–1594) introduced the Mercator projection, which helped solve a major problem of early navigators by providing a plane so that a straight line on the map would result in a line of constant bearing. On the other hand, if it is used to compare land areas, the Mercator projection is largely ineffective, because the regions, especially those at higher latitudes, are enlarged to a great extent.

Equivalent or equal-area projections preserve all relative areas, and are useful for visualizations in which the comparison of areas on the map is crucial, especially in the case of world maps. For example, dot-distribution maps rely on accurate area representation for the effective comparison of dot densities between regions on the map. Maps used for instruction and small-scale general maps also require equivalent projections. Most common equal area projections are Alber’s equal area, Lambert’s equal area (especially recommended for middle-latitude areas, such as the United States), Mollweide (good for world distributions), and the Goode’s homolosine.

Conformal or orthomorphic projections conserve angular relationships, such that the angle between any two intersecting lines will be the same on the flat map as on the globe. Even though conformal projections also distort shapes, the result is less pronounced than in other projections, with preservation of the shape of small circles. They are often used for large-scale maps and include most modern topographic maps. Conformal projections are also common in navigational charts. The conformal projections frequently used are Mercator, transverse Mercator, Lambert’s conformal conic, and the conformal stereographical.

Projections cannot preserve both angle and area—in other words, projections cannot be both conformal and equivalent. Monmonier explains, “Not only are these properties mutually exclusive, but in parts of the map well removed from the standard line(s), conformal maps severely exaggerate area and equal-area severely distort shape.” There are, however, projections that offer acceptable compromises between conserving area and conserving angles. A good example is provided by the Robinson projection, devised by geographer Arthur Robinson for the National Geographic Society, and used for its general-purpose world reference map between the years 1988 and 1998. Monmonier recommends a low-distortion projection, such as the Robinson projection, for world maps in which the representation of both land and ocean areas are important, and the Goode’s homolosine equal-area projection when only the land areas are relevant.
Other projections were devised for special purposes; among the most common are the *azimuthal*, the *plane chart*, and the *Robinson projection*—the latter a compromise between the conformal and the equal-area projections, as explained previously.

The map scale refers to the degree of reduction of the map. It is the ratio between a distance on the map and the corresponding distance on the Earth. The ratio is often presented in the map by a verbal statement in addition to a graphic bar. The distance on the map is always expressed as one, such that in a map scale of 1:10,000, 1 unit on the map represents 10,000 units on the Earth. Because the units are the same in either side of the scale, units do not need to be stated. The ratio scale is a dimensionless number.

Two factors should be considered when selecting the map scale: the objective of the map and the intended output. The goal of the visualization will suggest the geographical scope of the map.

Considering that all projections will cause distortions, when using whole world maps, "recentering" the projection to favor parts of the globe is usual. Rather than using the usual European-centered projection, this 1851 map depicting volcanic activity around the world by Traugott Bromme is centered on Asia. Delaney expounds, "The large yellow circle around Indonesia and part of Australia shows the destructive reach of Mount Tambora’s explosive eruption on April 11, 1815. Its magnitude has been given a 7 on today’s Volcanic Explosivity Index, the highest rating of any volcanic eruption since the Laki Taupo (New Zealand) eruption circa AD 1688. The map was part of a companion volume to Humboldt’s Kosmos. Color encodes categorical data, with red dots standing for eruptions, green circles for volcanic regions, and colored lines for ranges."

For example, if the goal is to portray political inclinations within a country, a world map is too small a scale, causing important details to be missed; if the goal is to study the distribution of languages around the globe, a world map is needed.

Similar to other types of visual displays, maps involve simplifications and generalizations. As Monmonier explains, “Generalization results because the map cannot portray reality at a reduced scale without a loss of detail.” As a result, it is often the case that symbols take more space than what they represent. For example, in order to make symbols legible and meaningful, lines demarcating the border of countries in a world map could be proportionately as wide as several miles, depending on the line thickness and the map scale. Symbol exaggeration is not uncommon in maps, but exaggeration should not hinder comprehension of that which the symbol represents.

Cartographers recommend that most thematic maps include features such as coastlines, major rivers and lakes, political boundaries, and latitude–longitude lines. 28 Deciding on which features to include will depend on the purpose of the map, with the caveat that the map scale imposes the level of details depicted in it. For example, a map portraying the transportation of goods in a country should include its major road system, which might not be needed for a map showing temperature, for example. The amount of features to include in a thematic map should suffice for the effective matching of the mental model of the spatial relations portrayed in the map in front of us. A locator inset map can always be added to maps to provide farther geographic context, effective in both static and dynamic maps.

The base map should provide enough contextual information about the general geographic space without eclipsing the visual representation of the thematic data. In other words, the base map elements should be depicted with similar degrees of generalization while being deemphasized and less detailed than the thematic distributions layered onto them. The same is true for how the geographic information is visualized, in that most world maps don’t need to carry the level of detail for coastlines, for example, as a large-scale map of an island would. The smaller the map’s scale, the less physical space available for visual marks and details. Robinson and colleagues alert, “This does not mean that symbols should merely shrink in size as map scale increases. Rather, the smaller the scale, the less feature detail there should be.” 29

Spectrum of Cartographic Scales

Monmonier explains, “Maps are scale models of reality. That is, the map almost always is smaller than the space it represents.”

Sometimes, map scales are presented as fractions rather than ratios, but both carry the same information regarding the relationship between the map and Earth. Thinking about fractions can help viewers more easily grasp map scales, because the larger the fraction, the larger the map scale will be. For example, 1/4 is larger than 1/3, the same way that 1:10,000 is larger than 1:50,000. The larger the scale, the greater the map’s capacity for details.

The graph to the right is based on Monmonier’s figure “Spectrum of cartographic scales, with selected examples and ranges for common applications.” Two series of maps illustrate the different scales depicted in the diagram. These maps were created by Stamen Design, which has experimented with different renditions for open source maps.

Prettymaps

Initially designed in 2010, Prettymaps is an interactive map composed of multiple freely available, community-generated data sources: Flickr, Natural Earth, and the OpenStreetMap (OSM) project. Stamen explains that the map has “Four different raster layers and six data layers (that means all the map data is sent in its raw form and rendered as visual elements by the browser) that may be visible depending on the bounding box and zoom level of the map.”

Dotspotting

Dotspotting (2011) is the first project Stamen released as part of CityTracking, a project funded by the Knight News Challenge.

Copyright © 2013. Rockport Publishers. All rights reserved.
Visual encoding is the process of matching the phenomena to be visualized, which is provided by the dataset (data scale and attributes), to the most suitable type of representation (graphical elements and visual properties). Visual encoding in cartography is often called symbolization.

DATA
In cartography and geo-informatics, data are divided into spatial phenomena (geography) and non-spatial phenomena, called thematic data. Thematic or non-spatial phenomena involve three levels of measurement (data scales) that increase in descriptive richness: nominal, ordinal, and quantitative. Nominal scales, often called categorical or qualitative, allow differentiation between features (e.g., “A is different from B”), as well as sorting features into meaningful groups. Names of counties and political parties are examples of qualitative data. In addition to differentiation by class, ordinal data enable ranking, although without indication of magnitudes. For example, we can order the largest to the smallest counties in terms of population, without knowing the extent of differences among them. Quantitative data can be measured and are often numerically manipulated using statistical methods. For example, we can say, “County A has twice as many residents as county B.” Or, given the area and population of counties, we can calculate the population densities (see appendix Data Types on page 204).

The data attribute of dimension is one of the most important characteristics when considering how to conceptualize visual marks in cartography, as well as in most other fields. For example, a point data such as a building (nominal) or an aggregated value of population (quantitative) in a city (nominal) can be symbolized by point marks. Area phenomena, such as the population density (quantitative) of a county (nominal), can be represented by area marks. In summary, data can have zero, one, two, or three dimensions, and be represented by the geometric elements of point, line, plane, and volume, respectively.

Another attribute relevant to thematic maps is whether data are discrete or continuous. Discrete data are composed of individual items, such as the cities on a map, which is different from continuous data, like temperature. Sometimes, discrete data, such as population, is transformed into continuous data by mathematical computations, as in the population density of an administrative unit. In some cases, this might not be ideal, if we consider that the population density will be visually represented as uniformly covering the entire area of the unit, and not depicting the “real” location of where people reside. On the other hand, this might not be easily avoided, in view that most social data are collected by administrative units.
Thematic maps can depict several sets of nonspatial data simultaneously. When a thematic map portrays exclusively one set of data, it is called univariate. If it shows two distinct sets of data, it is called bivariate, and for more than two sets, maps are called multivariate. For example, a map depicting population density would be a univariate map, and if in addition to the population density it portrays political affiliation, it would be considered a bivariate map. There is a limit on how many layers of visual information can be represented in a map without loss of legibility. Multiples are often used to represent such cases, as Bertin warns, “In any problem involving more than two components, a choice must be made between the construction of several maps, each one forming an image, and the superimposition of several components on the same map.”

The data sources and any data manipulation should be indicated on the map, and they are most often reported in the legend. It is valuable information that enables verification of the sources, the accuracy of the representation, and the reliability of the map.

TITLES AND LEGENDS

In general, titles provide the context for interpreting the visualization at hand. Titles should be as direct as possible and introduce the subject being represented on the map: the geographic, topical, and temporal context.

Legends or keys are essential to the effectiveness of any visualization and should be positioned in close proximity to the marks for which they stand for, to avoid forcing the viewer to search for meaning (grouping principle). Whenever possible it is recommended to include the verbal description, or label, for marks in the visualization itself, either in place of or in addition to the legend.

For ease of detection, marks should have the exact same appearance as on the map itself, including the size and orientation of symbols. Our perception of visual marks is sensitive to orientation, in that a symbol rotated 90 degrees or 180 degrees will be perceived differently, and might even be unrecognized with the additional burden of having to relearn it. For example, a square rotated 45 degrees becomes a diamond, which in this case also has a different verbal description.
Segregation between Figure and Ground

The segregation between figure and ground principle describes the tendency to organize visual elements into units and to construct relationships. In this process some elements are selected as figure and the remaining as ground.

A central factor in perceiving objects is the detection of boundaries. Figure and ground should be easily distinguished. Otherwise, ambiguity is produced and they can be perceived as reversible.

Segregation between figure and ground is a dynamic process: perception shifts from one to the other possible image without stability. In the image above, we either perceive two white faces on a yellow background or a yellow vase on a white background—but not the two simultaneously.

Studies have shown that certain graphical variables enhance segregation of figure and ground. For example, the graphical variable of scale can influence how we perceive objects: a small shape in a larger shape will be viewed as the figure.

Another cue that has been reported is the tendency to perceive lower regions in the display as more figure-like than regions in the upper portion. The two images above are identically constructed. Despite the shift in color, people tend to perceive the bottom region as the figure.

VISUAL VARIABLES

Bertin is considered to be the first to have proposed a theory of graphical representation of data for use in maps, diagrams, and networks, published in his seminal book *Semiology of Graphics* in 1967 in France, with the first English edition in 1983. His theory is based on semiotics and associates the basic graphic elements with visual variables and types of phenomena. Although Bertin's system has been widely adopted by cartographers and designers when selecting the appropriate type of marks for encoding data, it also has been expanded to include other variables not considered initially. One finds in the literature various proposals for expansions that are geared toward different purposes and the needs of specific fields. For example, most proposals have added the variable of color saturation to the other color variables of hue and value. Other proposals include tactual elements in maps for visually impaired users and dynamic variables for maps changing over time.

The system presented here builds on Bertin's initial framework with the addition of variables from other systems that are relevant to the visualizations analyzed throughout this book. The system is not prescriptive; rather, the goal is to provide guidelines for appropriately matching types of phenomena (described previously) with graphic elements and visual variables. For example, in cases involving ordered data, visual order should be perceived in the corresponding visual encoding. If that is not the case, then the visual encoding is unsuitable and could be misleading, as Ware explains, “Good design optimizes the visual thinking process. The choice of patterns and symbols is important so that visual queries can be efficiently processed by the intended viewer. This means choosing words and patterns each to their best advantage.”

The basic graphic elements, the primitives of visual representation, and their semantics are:

- **Point** has no dimension and provides a sense of place.
- **Line** has one dimension and provides a sense of length and direction.
- **Plane** has two dimensions and provides a sense of space and scale.

The visual variables correspond to visual channels and the way features are extracted in our brains. As Ware explains, “Visual information is first processed by large arrays of neurons in the eye and in the primary visual cortex at the back of the brain. Individual neurons are selectively tuned to certain kinds of information, such as the orientation of edges or the color of a patch of light.” Going back to chapter 1, in the section on the model of human visual information processing, you will notice that the variables listed below are among the preattentive features illustrated on page 23.
BERTIN'S SYSTEM OF PERCEPTUAL VARIABLES

Jacques Bertin introduced the term visual variables in his seminal book *Semiotic Graphique*. The diagram above presents his system of perceptual variables with the corresponding signifying properties. Dark gray stands for appropriateness.9

Bertin’s system has been extended over time to include other variables, such as color saturation. Also included in the bottom table is a new visual variable introduced by MacEachren, clarity, that consists of the three subvariables listed in the table: crispness, resolution, and transparency. Other variables considered by map makers, but not included here, refer to motion, like velocity, direction, and frequency for example. The table was compiled after MacEachren, with middle gray standing for "marginally effective."10
These features can increase the performance of tasks requested by visualizations, such as target detection, boundary detection, region tracking, and counting and estimation.

The visual variables are organized into two functional groups: positional (in space, or where; and in time, or when) and visual properties of the entity (what). Positional variables are processed separately in the brain and have a dominant role in perceptual organization and memory; they are described by the two dimensions of the plane (x and y), the time dimension (display time), and spatial arrangement. Nine visual properties are considered: shape (and texture shape), size, color hue, color value, color saturation, orientation (and texture orientation), texture arrangement, texture density, and texture size.

Different from other visualizations, thematic maps are not concerned with conceptualizing the topological structure, which is provided by the geographic information in the form of the base map. All other visualizations in this book require the crucial step of deciding on the most appropriate topological structure, especially with regard to visual representation of abstract data.

GRAPHICAL METHODS

There are six graphical methods used primarily in thematic maps for representing all sorts of qualitative and quantitative data:

1. Dot distribution maps
2. Graduated symbol maps
3. Isometric and isopleth maps
4. Flow and network maps
5. Choropleth maps
6. Area and distance cartograms

What follows is a brief historical account of these techniques with a brief examination of recent best practices.
Relative Judgments in Perception: Weber's Law + Stevens’ Law

The nineteenth-century experimental psychologist Dr. Ernst H. Weber (1795–1878) noticed that the minimum amount by which stimulus intensity must be changed in order to produce a noticeable variation in sensory experience between two stimuli is proportional to the magnitude of the original stimulus. The minimum amount is also called the Difference Threshold or just Noticeable Difference (JND). Imagine that we are holding one kilogram in each hand and that we add weight to one of the hands, up to when we start perceiving differences, for example, at around 1.1 kilograms. The difference threshold (or the JND) in this case would be 100 grams, and the Weber fraction would equal 0.1. The fraction can be used to predict JND for other magnitudes, such that we know we would need at least 500 grams to notice changes in sensory experience when we start with a 5 kilogram weight, because we wouldn’t perceive differences by only adding 100 grams to this initial amount.

Gustav T. Fechner (1801–1887) built a theory around Weber’s discovery, which he called Weber’s law (also known as the Weber–Fechner law), stating that the subjective sensation is proportional to the logarithm of the stimulus intensity. In other words, the stimulus varies in geometric progression to a corresponding arithmetic progression of the sensation.

In 1975 Stanley Smith Stevens showed that the relationship between the magnitude of a physical stimulus and its perceived intensity follows a power law. His results show, for example, that the power for visual length is 1.0 (totally accurate), for visual area it is 0.7 and for redness (saturation) it is 1.7. In other words, when the dimension of the area attribute increases, so does our tendency to underestimate it. The opposite happens in relation to saturation: our tendency increases to overestimating it. The graph above uses data from Stevens’ seminal paper.

Wilkinson cautions: “The presence of bias in human information processing does not imply that we should normalize the physical world to an inferred perceptual world.” On the other hand, if the goal is to represent differences in scale of the elements being represented, then we should pay closer attention to the bias, so as to afford discrimination between visual marks.

One implication to visual encoding is that the larger the number of visual attributes shared by marks, the harder it will be to note differences among them. Take, for example, the difficulties in reading text formatted using only uppercase letters, in contrast to uppercase and lowercase conditions.

Kosslyn advises, “Except for very large or very small starting levels, a constant proportion of the smaller value must be added in order for a larger value to be distinguishable... The law applies to size, lightness, thickness, density of dots, cross-hatching, and type of dash.”
DOT DISTRIBUTION MAPS

Dot distribution maps aim at revealing the spatial distribution of phenomena using the basic element of a point as the visual mark. The maps can depict two sets of discrete data: discrete phenomenon with known geo-location information, such as medical mappings, or discrete phenomena with smooth variation, like most maps depicting census data, in which symbols are distributed within the corresponding geographic area in order to portray densities (not the specific locations of the phenomena). Whole numbers, rather than derived numbers, should be used in either case to equate to the value of symbols. In the first case, a dot equates to one phenomenon, and in the latter, it corresponds to an aggregated value (e.g., one dot representing 1,000 people).

Given the current access to geo-tagged digital data, we now see a proliferation of maps with a one-to-one correspondence between datum and symbol. In these maps, dots are positioned according to a precise location (x, y-coordinates) given by the phenomenon. The maps by Eric Fischer using Flickr data are good examples.

But, not all datasets contain geo-locational information for individual occurrences. Rather, most data are provided by enumeration tracts, as exemplified in the demographic map published by the New York Times. In these cases, three parameters should be taken into account when creating the map: the unit value, the dot size, and the dot location.

Assigning the unit value and the unit size largely affect how the map is perceived. For example, if the dot size is too small, and each unit equates to large numbers, the map might be perceived as representing phenomena that are sparser than in actuality. Similarly, if a dot size is too large, and each unit equates to small numbers, the map might give a wrong impression of high density. Problems get even harder in datasets with large density variations, for which some cartographers have used a combination of graduated and distributed dot methods. Decisions on dot placement are also not trivial and will affect perception. For manually positioning dots, it is recommended to group features according to a center of gravity within the statistical unit, as well as cross relating with other meaningful geographic information, such as topography and the location of cities. For example, in maps portraying agricultural data, it would be meaningful not to cluster symbols in urban areas. The smaller the statistical area, the easier and more meaningful the distribution of symbols will be. There are, however, a number of available programs for producing dot distribution maps, because most maps are now produced digitally.

This 1808 map by Frère de Montizon depicts population in France by administrative departments. It is the earliest known use of irregularly spaced dots as an encoding. Each dot stands for 10,000 people. The innovation of dot distribution maps went unnoticed for a while, as Robinson explains, “except for a few rather crude, large-scale applications, without clear unit values...” In medical mapping, we still see that this basically simple, logical idea had to wait some thirty years to be reinvented and much longer than that to become generally known.”

Also recommended is the nomogram developed by J. Ross Mackay as a tool to help determine the relationship between dot size and unit value.

The New York Times published an online series of interactive maps showing data from the 2010 census (Census Bureau: socialexplorer.com). The maps depict population growth and decline, changes in racial and ethnic concentrations, and patterns of housing development.

This map and the maps on the next page portray the distribution of racial and ethnic groups in the United States. The technique is dot distribution, where one dot in the map stands for twenty-five people. Dots are evenly distributed across each census tract or county. Because the map is interactive, one can look at different parts of the country and learn about their specific ethnic configurations, including trends provided by changes from the previous census in 2000.

The circle is the most common shape, though some maps use the visual variable of shape to differentiate between categories (nominal scale). Color hue is also often used for this purpose, especially in the case of multivariate dot maps, though color hue should be used with care because it is difficult to perceive color differences in marks that are too small.

Dot maps provide an intuitive way for understanding data distribution, because variations in pattern are readily available, as clustering, for example. Dot maps are effective in portraying relative densities and, conversely, bad at displaying absolute quantities. There is, however, a tendency to underestimate the number of dots and the differences of densities between areas. As such, it is important that the unit value be a round number and clearly stated. It also helps to provide legend samples that illustrate different densities in the map, such as representations of low, middle, and high densities. As mentioned in the section on map projections, dot distribution maps require equal-area map projection, because the areas are not distorted, which is required for comparison of densities.

Because points are nondimensional elements, once the variable size is added to represent scale, the two dimensions of the plane are also added. What was a point is now a plane used to represent ordinal and quantitative data in a proportional symbol map, the focus of the next case study: graduated symbol maps.

The smaller the marks, the harder it is to distinguish between the color hues of the marks.
These maps are from the same online series by the New York Times depicting data from the 2010 census reproduced on page 131. It is worth noting how changes in scale provide different views of the data and varying perceptions of patterns, an artifact of the dot distribution technique as discussed on this spread.

In 2011, Ben Fry designed “Density” to show the global population density as the world reached the 7 billion milestone. Circles with varying size and hue encode population density, with larger and darker circles covering areas with fewer people. The visual encoding is effective, because the map highlights the populous areas. Fry writes, “Representing denser areas with smaller circles results in additional geographic detail where there are more people, while sparsely populated areas are more vaguely defined.”

In 2004, Ben Fry created this map out of curiosity about the system behind ZIP codes. The map is constructed out of all the ZIP codes in the United States. For each ZIP code number, the software positions a dot in space according to the latitude-longitude coordinates provided by the U.S. Census Bureau. The result is the rendition of the U.S. map with a clear understanding of population density in the country, because there are more ZIP code numbers in denser areas. Considering that it is an interactive online tool, it is possible to search for ZIP codes as well as highlight areas that share the same partial numbers, such as all codes starting with 0, or with 33, and so on. A detailed description of this project, together with the source code, can be found in his book Visualizing Data.
This map depicts the cholera epidemic of 1854 in the south of London, considered one of the worst ever, killing around 500 people in ten days within a perimeter of 250 yards (229 m). The British anestesiologist Dr. John Snow mapped the outbreak in an effort to argue for his theory that cholera was a waterborne illness, not an airborne disease, as was believed at the time. Dr. Snow used the General Register Office’s weekly mortality report of London as the source for laying out the individual deaths (represented as bars) in relation to the water sources (represented as circles) in the urban area of St. James, Westminster. To the official data, he added local knowledge, such as information provided by Reverend Whitehead, who also had mapped the outbreak.

The map did not pioneer the use of point marks to depict disease occurrences. As Robinson explains, “An Inquiry into the Cause of the Prevalence of the Yellow Fever in New York” from 1797 by Seaman is considered to be the first of its kind. Several medical practitioners in the beginning of the nineteenth century in Europe used maps as a means to understand environmental aspects of disease outbreaks. In medicine as well as in other fields, maps served as visual arguments of spatially grounded theories.

In the book Disease Maps, Tom Koch describes how “Snow developed a spatial theory that was tested in the map. This was not propaganda but an attempt at science. The map was the embodiment of Snow’s proposition that cholera was waterborne. Dr. Snow added a dotted line to represent the walking distances of the neighbor population to the infected water pump. In other words, the line provided a temporal measure of how long it took to get to water sources.”

Dr. Snow’s map did not bring an end to the cholera epidemic, nor did it convince the health authorities of the waterborne theory. Discussions around the nature of cholera only settled in 1856, when bacteriologist Robert Koch identified Vibrio cholera as the waterborne agent. The map, however, helped advance understanding of a public health issue (cholera epidemic) by revealing the disease pattern (inherently numerical) in the spatial context (walking distances to water pumps).

Steve Johnson, in his book The Ghost Map, writes about its legacy: “Snow’s map deserves its iconic status. The case for the map’s importance rests on two primary branches: its originality and its influence. The originality of the map did not revolve around the decision to map an epidemic, or even the decision to encode deaths in bars across the street diagram. If there was a formal innovation, it was that wobbly circumference that framed the outbreak in the second version, the Voronoi diagram. But the real innovation lay in the data that generated that diagram, and in the investigation that compiled the data in the first place. Snow’s Broad Street map was a bird’s eye view, but it was drawn from true street-level knowledge.”

In the center of the image, a yellow area is highlighted. The area corresponds to the line Dr. Snow drew on the map to depict the equal walking distances between the Broad Street water pump and other pumps.

Dr. Snow did not use a Voronoi diagram in his efforts to understand the cholera outbreak. However, when we draw a Voronoi diagram onto the original map, it shows that the cell containing the largest number of deaths coincides with the one where the Broad Street water pump is located.

Eric Fischer created this set of thematic maps “Locals and Tourists” in 2010. The dots depict the location of photos that were geo-tagged and uploaded to the photo server Flickr. By analyzing the frequency of photos taken in the locations, Fischer was able to categorize photographers into three groups according to the criteria and color code as follows:

- Local photographers (blue dots): Locals are those who have taken pictures in this city over a range of a month or more.
- Tourists (red dots): Tourists are defined by two criteria: those who took pictures in this city for less than a month but also seem to be a local of a different city, provided by the number of photos there.
- Undefined (yellow dots): Undefined stands for images for which it was not possible to determine whether or not the photographer was a tourist, because pictures were not taken anywhere else for over a month.

www.flickr.com/photos/walkingSF/sets/72157624209158632
GRADUATED SYMBOL MAPS

Graduated symbol maps use the visual variable of size to proportionally represent magnitudes of thematic discrete data. The size is proportional to the quantities represented, but not dependent on the geographical area over which it stands. This characteristic helps avoid problems of confounding geographic area with data values, as in the case of choropleth maps (see page 142).

There are two main variables to consider when designing a graduated symbol map: the shape of the symbol and the scaling. The shape of the marks can vary, and the most common is the circle, although we see rectangular bars as well as triangles being used. There have been attempts at three-dimensional symbols, where the scaling is done to the cube rather than to the square root. But, if area perception is already hard in two dimensions, and often underestimated, then it gets even more problematic judging relative sizes of quantities provided by volumes. Glyphs have also been used for depicting more than one variable. The 1858 map by Minard is the first known example, where pie charts are used to portray different kinds of meat.

Selecting the scaling method is perhaps the biggest challenge in proportional symbol maps, as well as in choropleth maps. There are two ways to scale the size of symbols: classed, when size is range graduated, and unclassed, when sizes follow a proportional system.

In unclassed systems, the number of categories is equal to the number of data values. If there are five values, then there will be five encodings. For representing a large number of values, the most common strategy is the use of percentages. This strategy is more commonly employed in choropleth maps using color value graduation, rather than for scaling symbols, because differentiation would be almost impossible.
Two issues should be considered in classed systems because they influence how data are represented and thus perceived: the number of classes and the method for dividing the data. A differing number of classes influences the patterns revealed in the visualization, and it is recommended to experiment with the number of groups before making a final decision. The same holds true for the methods used for breaking down quantities (see the box Making Meaningful Groups on page 141). It is highly recommended to first analyze the data to understand certain characteristics, such as distribution. For example, using quantile methods—dividing quantities into groups of equal numbers—for representing skewed data is a poor choice, in that identical values will be divided into different groups, and different values will be grouped together. Color values and color saturation might be used to map other data attributes; however, perception is hindered in small marks.

New York Times, U.S.:

During the presidential election in 2008, the New York Times published a series of visualizations showing votes by counties and state. The maps include data on previous elections back to 1992. For each year, the application allows viewers to select the visual technique used to represent the data. This spread focuses on the graduated dot symbolization. A comparison with the choropleth technique is available on the next page.

These maps are from the same online series shown on the previous page. The maps were published by the *New York Times* during the presidential election in 2008. Color depicts categorical data: the political affiliation of voters, whether Democrat (blue) or Republican (red). The area of circles represents quantitative data, which is proportional to the amount of votes in each county by the leading candidate. The application allows viewers to choose the graduated system providing five ways of scaling circles. Note the differences in perceiving the phenomena with the changes in the circle scales. Finally, compare the bottom row maps and how identical data is depicted using different methods: a graduated symbol map (left) and a choropleth map (right).

Correct Method: circles scaled proportional to area; calculated according to square roots

Wrong Method: circles scaled proportional to diameter; calculated according to radius

Using the radius of a circle symbol to stand for the statistical amount is erroneous and leads to misrepresentation of the data. Furthermore, it causes misperception of the phenomena, due to the increase in size of symbols as a consequence of the calculation. In sum, the radius of circles or the side lengths of squares should not be used to scale graduated symbols.

Ordinal Scale

- Small cities
- Medium cities
- Large cities

Range-Graded Scale

- 50-70
- 70-100
- 100-250
- 250-500

Ratio Scale

- 50
- 100
- 250

As the identical legends illustrate, we can use graduated symbols to stand for three types of scales: ordinal, range graded, and ratio. Illustration redrawn after Robinson and colleagues.

Making Meaningful Groups

The goal of breaking down quantities into groups (or classes) is to enhance patterns that might otherwise not be revealed in the more detailed representation (unclassed). Closely associated with how we reveal patterns is the other side of any visualization, which is how the viewer detects patterns given our own perceptual limitations. For example, we are unable to distinguish more than seven shades of gray (see the box Magenta Number Seven on page 97). Finally, the purpose of the map also helps determine how the breaks and the number of classes are defined.

The methods used for breaking down quantities are especially important and will largely influence the graphical encoding as well as how the visualization will be perceived. Carefully chosen groups will enable identification of meaningful information.

There are three basic methods for defining boundaries between the groups (or classes):

1. **Equal steps.** Data are grouped into arbitrary equal divisions that can either be based on equal intervals, such as equal value steps 6–100, 100–200, or equal number of data values, such as on quantiles, where, after ordering values, data are divided by the number of classes into groups.

2. **Unequal steps.** Data are grouped using interval systems toward the upper or lower ends. Mathematical progressions help define the intervals using an arithmetic series (numeric difference) or a geometric series (numeric ratio). The method is used, for example, to depict increasing or decreasing values at either constant or varying rates. The resulting classes will contain members with similar data values.

3. **Irregular steps.** Data are grouped according to internal characteristics of the distribution. One reason for using such variable series is to highlight data values that would not be apparent when using a constant or regular series, while preserving an understanding of the whole distribution. To accomplish such complex tasks, especially when dealing with large datasets, we need to use statistical means involving both graphic and iterative techniques to help in selecting the breaks. Frequency and cumulative graphs are commonly used in those cases.
CHOROPLETH MAPS

Choropleth maps are perhaps the most popular technique for representing statistical data using area symbols. Choropleth maps typically display data that have been aggregated by administrative units (the area symbols), and the values have been normalized (e.g., densities, ratios, averages).

One of the problems with choropleth maps is that the size of the area base for the encoding—the administrative unit— influences the perception of the quantity being represented. To avoid confounding geographic area with data values, it is crucial that normalized data be used instead of absolute data. Densities, ratios, and averages should be calculated prior to encoding.

The visual variables used in choropleth maps to encode quantitative data include color value, color saturation, and texture, or a combination of them. Color hue is often used for differentiating between categorical data in the case of multivariate maps. Color value and saturation are ordered variables, whereas color hue is not. That is the reason color value is usually used in choropleth maps, which represent range-graded data. MacEachren warns, “A common objection by cartographers to maps of quantities produced by noncartographers is that these maps often ignore the importance of the linear order schema and employ a set of eye-catching (but randomly ordered) hues. Sometimes the hues are ordered, but according to wavelength of the hue. Wavelength ordering is not immediately recognized by our visual system, and therefore is unlikely to prompt the appropriate linear order schema on the part of the viewer.”

Legends should help viewers recognize the implicit order. For example, do darker colors represent higher quantities? The legend should provide the answer.

The elements to be considered when designing choropleth maps are the size and shape of the area unit, the number of classes, and the method used for classifying the data.

Because visual encoding is uniformly distributed within the regions of choropleth maps, the impression is that the phenomena represented are also uniformly distributed, which most often is not the case. The overall impression of the phenomena will be more meaningful if the statistical areas are of similar shape and small in size. Whenever possible, it is recommended to avoid using areas with large variation in size and shape. The maps by the New York Times showing political affiliation during the 2008 presidential election provide good comparison of impressions caused when the data are represented by state and by counties.

As already discussed in the case of graduated symbol maps, the number of classes as well as the way the data are divided into the groups influence the resulting patterns. There is extensive literature devoted to methods used to determine the boundaries of classes, and the box Making Meaningful Groups (page 141) offers a brief summary of most common methods. The distribution of the data will likely provide meaningful information for the number of classes. The methods can be used for defining classes in choropleth, isarithmic, and graduated symbol maps.

Data classification will largely influence which data features are emphasized and which are suppressed. If, on one hand, having a large number of classes provides more detailed results, then, on the other hand, there are limits to how many classes of color value (or texture) we are able to distinguish. There are also differences in how we perceive monochromatic versus color symbolizations. In general, it is safe to constrain the number of classes to a maximum of five to eight classes, because the range fits into a cognitively efficient zone (see the box Magical Number Seven on page 97).
"Crimes contre les personnes" (Crimes Against People) was published in Essai sur la statistique morale de la France in 1823. The map depicts crime in France from 1825 to 1830 and was made by André-Michel Guerry, who is considered to have pioneered the mapping of criminal statistics. There are seven shades representing different levels of crime, from dark brown (more crimes) to white (fewer crimes). Each administrative department is ranked, and the map includes the numbers. The list at the bottom provides the absolute numbers of crimes committed in each department. Note that Corsica, which belonged to France at that point in time, had the highest crime rate.
Given the relativity of color perception, color should be used with care, especially when encoding quantities. Critical issues to consider when making decisions about palettes include color blindness and perceptual illusions (e.g., light colors are perceived as larger than darker colors are). The box Selecting Color Schemes presents a good summary on the perception and the most appropriate scales for use in visualization (see next page).

Because data are encoded within defined contained areas, there is a strong impression of abrupt changes at the boundaries. One attempt at showing smoother transitions is provided by the dasymetric technique. This technique combines methods used in choropleth and isopleth maps, in that it represents areas independent of the statistical units.

The two choropleth maps depict votes by state (top) and by counties (bottom) during the presidential election in 2008. The maps published by the New York Times online belong to the same series already discussed in the section about graduated symbol maps on page 138.

Color hue depicts categorical data; the political affiliation of voters, whether Democrats (blue) or Republicans (red). In the map depicting counties (bottom), color value represents quantitative data, which is proportional to the amount of votes in each county by the leading candidate.

The New York Times election 2008 choropleth maps clearly exemplify the influence the sizes of the statistical units have on the representation of the phenomena. As the schematic images above show, representations are more informative when the units are smaller.

Luminance Illusions

Luminance illusions happen because our eyes don’t signal absolute quantities to the brain. Rather, the nerves transmit relative amounts, affecting our perception of visual displays. As Ware explains, “The nervous system works by computing difference signals at almost every level. The lesson is that visualization is not good for representing precise absolute numerical values, but rather for displaying patterns of differences or changes over time, to which the eye and the brain are extremely sensitive.”

The top squares have identical size, but the black one is perceived as slightly smaller due to its darker color.

In the second image, the gray gradient bars are identical, but they are perceived differently due to differences in background lightness.

The squares on the bottom image are identical, but they are perceived with different gray values due to changes in the background (contrast illusion).
Selecting Color Schemes

Color has three perceptual dimensions:

Color hues are what we commonly associate with color names. Color hues are not ordered and allow differentiation only between features, such that yellow is different from blue, green from red and so on.

Color lightness, also called luminance, is a relative measure and describes the amount of light reflected (or emitted) from an object when compared to what appears white in the scene. Lightness is ranked, and we can talk about a scale from lighter to darker values within a hue.

Color saturation refers to the vividness of a color hue, in the design field, saturation is often called shade or tint. Color saturation varies with color lightness, in that saturations are lower for darker colors. The more desaturated a hue is, the closer it gets to gray—in other words, the closer it gets to a neutral color with no hue.

It is not an easy task selecting effective color schemes for thematic maps and data visualizations in general. This box offers advice from Cynthia Brewer's theorems for selecting appropriate color schemes by taking into consideration the nature of the data, as summarized in the graphic typology to the left (drawn after Brewer). More information is available online at the Color Brewer tool, where you can interactively select the number of data classes, with a few other parameters, such as whether the output will be printed (CMYK) or screen based (RGB or HEX), and have color schemes recommended to you:

http://colorbrewer2.org

The number of data classes influences the choice of color schemes, the larger the number of classes, the larger the number of colors needed. The box Magical Number Seven explains the perceptual and cognitive constraints with having more than five to seven classes of objects, and how it might affect legibility as well as memorability of the material in front of us (page 57). Brewer explains: "Many cartographers advise that you use five to seven classes for a choropleth map, isoline maps, or choropleth maps with very regular spatial patterns, can safely use more data classes because similar colors are seen next to each other, making them easier to distinguish."

Cynthia Brewer's recommendations for color schemes according to the nature of data are:

- **SEQUENTIAL SCHEMES** are suited to ordered data that progress from low to high. Lightness steps dominate the look of these schemes, with light colors for low data values and dark colors for high data values.

- **DIVERGING SCHEMES** put equal emphasis on mid-range critical values and extremes at both ends of the data range. The critical class or break in the middle of the legend is emphasized with light colors, and low and high extremes are emphasized with dark colors that have contrasting hues.

Diverging schemes are most effective when the class break in the middle of the sequence, or the lightest middle color, is meaningfully related to the mapped data. Use the break or class emphasized by a hue and lightness change to represent a critical value in the data, such as the mean, median, or zero. Colors increase in darkness to represent differences in both directions from this meaningful mid-range value in the data.

- **QUALITATIVE SCHEMES** do not imply magnitude differences between legend classes, and hues are used to create the primary visual differences between classes. Qualitative schemes are best suited to representing nominal or categorical data.

Most of the qualitative schemes rely on differences in hue with only subtle lightness differences between colors. Two exceptions to the use of consistent lightness are

- **PAIRED SCHEME**: This scheme presents a series of lightness pairs for each hue (e.g., light green and dark green). Use this when you have categories that should be visually related, though they are not explicitly ordered. For example, 'forest' and 'woodland' would be suitably represented with dark and light green.

- **ACCENT SCHEME**: Use this to accent small areas or important classes with colors that are more saturated/darker/lighter than others in the scheme. Beware of emphasizing unimportant classes when you use qualitative schemes.

We should never forget about devising color blind-safe schemes. Color blindness refers to the inability or limitation to perceive the red-green color direction, and it was discussed in chapter 1 (pages 36–37). A safe strategy is to avoid using only the hue channel to encode information and create charts that vary slightly in one other channel in addition to hue, such as lightness or saturation.
ISOMETRIC AND ISOPLETH MAPS

Isarithmic maps represent real or abstract three-dimensional surfaces by depicting continuous phenomena. There are two kinds of lines of equal value used to demarcate continuous surfaces on the map:

- Isometric lines show distribution of values that can be referenced to points.
- Isopleth lines show distribution of values that cannot be referenced to points.

In isometric maps, the lines depict data values at specific points on a continuous distribution. In other words, the dataset provides data points that define the lines. Topographic maps and temperature maps are good examples of surfaces that are measured at specific locations.

In isopleth maps, the lines depict data that were not measured at a point, but instead are derived values that are calculated in relation to the area of collection. The calculated centroid of each area is considered the data point for the line construction. Isopleth maps representing population density are examples. Maps representing the mean monthly temperatures or average precipitation levels are common examples in which data are derived from observations, though they are slightly different from density maps, in which the attribute value cannot be referenced to points.

In both cases, smooth contours are achieved by the interpolation of data points. When used without the shading, they are called isoline maps. A variation is provided by a planimetric three-dimensional graphic representation of the surfaces.

Edmond Halley’s 1701 map of magnetic lines is considered the first map to make use of lines of equal value to encode data (see page 119). The first isopleth maps depicting population densities were created by Danish cartographer N. F. Ravn and published in 1857. Robinson explains, “An isopleth map of population densities employs an involved, graphic, geometric symbolism for describing a threedimensional surface to show the structure of an imagined ‘statistical surface’ formed by the variations in ratios of people to areas. An ‘ordinary’ contour map is in reality a very complicated system of representation, and the concept of a statistical surface of population densities is exceedingly abstract. That the two could be combined by the 1850s, and readily accepted, shows how far thematic mapping had come.”

The use of isolines to represent population data is less popular today. The majority of isarithmic maps that we encounter nowadays show natural phenomena, such as climate and geology.

The construction of isarithmic maps involves three elements: the location of control points, the interpolation method to connect the location points, and the number of control points.
The Physikalischer Atlas by Heinrich Karl Wilhelm Berghaus (1797–1884) is considered a monumental achievement in thematic cartography history. The atlas was issued over several years, and the first edition of the bound atlas consists of ninety maps in two volumes, dated 1845 and 1848. This meteorological map is the second map in the atlas. Using a polar projection, Berghaus depicted the mean temperature in the Northern Hemisphere by drawing isotherm lines at 5°C intervals.
The publication in 1817 of this “Chart of Isothermal Lines” by Alexander von Humboldt played an important role in the widespread use of curves to depict quantitative phenomena in the nineteenth century, even though the first use was by Halley a century earlier. The diagram depicts lines of average temperature in relation to geographical zones defined by the latitude-longitude system. It also coined the term isotherm for the technique.

The map shows the distribution of the population of the United States in 1880. It was part of the Statistical Atlas of the United States based upon the results of the eleventh census by Henry Gannett, published in 1899. Note the six classes, with darker shades standing for higher density. Cities with over 8,000 inhabitants are represented by black circles with scale proportionate to their population.

Oakland Crimespotting was designed and built by Stamen Design's Michal Migurski, Tom Carden, and Eric Rodenbeck. It is an interactive map showing crimes in Oakland, California. The motivation is stated on the website: "Instead of simply knowing where a crime took place, we would like to investigate questions like: Is there more crime this week than last week? More this month than last? Do robberies tend to happen close to murders? We're interested in everything from complex questions of patterns and trends, to the most local of concerns on a block-by-block basis."

The application is a work in progress since 2008, and the screenshots shown here are not built into the interactive tool available online. On the other hand, they are worth reproducing here, because it is an effective use of isopleth for visually answering some of the questions that motivated the work.

http://oakland.crimespotting.org
FLOW AND NETWORK MAPS

Flow and network maps portray linear phenomena that most often involve movement and connection between points: origins and destinations. Maps depicting the flow of migrations in the world or the network of friends on Facebook are examples (see page 50). Most maps encode multivariate data using the visual attributes of line width, line quality, color hue, and spatial properties, the latter of which are provided by the geo-location of the data.

The first known flow maps were made by Hames, who published three of such maps in 1837, mostly depicting the average number of passengers on the Irish railway system. It is unknown whether these became available to other mapmakers, but around the mid-1840s Alphonse Beigele and Charles Joseph Minard in France also began making flow maps. Minard (1781–1870) was a prolific cartographer and produced fifty-one thematic maps mostly focusing on economic geography, of which the majority (forty-two) were flow maps. According to Robinson, “Minard clearly outdid Hames and Beigele in the number, variety, and sophistication of his thematic maps of movement.”

We see a boom in flow and network maps due to the amount of spatio-temporal data currently available. Robinson contends, “Like the dot map and the dasymetric technique, their [flow maps by Minard] sophisticated cartographic methods would have to be reinvented.”

This 1855 map by Charles Joseph Minard depicts the approximate amount of cereals that circulated by land and water in France in the year 1853: “Carte figurative et approximative des quantités de céréales qui ont circulé en 1853 sur les voies d’eau et de fer de l’Empire Français.” The visual encoding is

1. Spatial position: The lines are geo-located according to the given trajectories. A sense of direction is also represented with arrows.

2. Line width: The width is proportional to the amount of cereals transported (the quantitative thematic variable). Note that the widths are different for the transport to and from Paris, which are divided by a dotted line. Numeric information is also written within the lines.

3. Color hue: Lines are colored according to the means of transport, whether it was via boat (green) or train (red).
Two major challenges of designing flow maps are obfuscating the base map with the bands and avoiding too many overlaps and thus visual clutter. Minard met both challenges when he created flow maps in the nineteenth century. The two series of flow maps depict the approximate amounts of cotton imported by Europe. The map on the top, “Carte figurative et approximative des quantités de coton en laine importées en Europe en 1858 et en 1861,” was published in 1862 and portrays data for 1858 and 1861. The map at the bottom, “Carte figurative et approximative des quantités de coton brut importées en Europe en 1850, en 1864 et en 1865,” was published in 1865 and depicts data for three years: 1858, 1864, and 1895.

The reason for reproducing both maps here is so that we can examine how Minard distorted the base maps in favor of the flows of goods, which is the objective of the maps. If we compare the two series of maps, we will see how the one at the bottom, with increasing flow of goods over the years, depicts a more distorted geography, though distortion happens in the former as well. Robinson explains that Minard “was much more concerned with portraying the basic structure of the distribution than he was with maintaining strict positional accuracy of the geographical base—this from an engineer!”

Another feature still in current practice and worth stressing is how Minard bundled flows with shared destinations so as to avoid visual clutter.

In both maps, each millimeter corresponds to 5,000 tons of cotton. In addition to the visual representation provided by the width of bands, Minard included the absolute numbers next to each band. Color encodes the countries from which cotton is imported. The notes, as usual, present commentary on findings and questions. For example, in the maps on the bottom, Minard discusses how the American Civil War affected the commerce of cotton and the countries that were producers.

Phan and colleagues developed a technique to automatically generate flow maps that uses three lessons learned from Minard: intelligent distortion of spatial positions, intelligent edge routing, and merging of edges with shared destinations. They explain, “Our approach uses hierarchical clustering to create a flow tree that connects a source (the root) to a set of destinations (the leaves). Our algorithm attempts to minimize edge crossings and supports the layering of single-source flow maps to create multiple-source flow maps. We do this by preserving branching substructure across flow maps with different roots that share a common set of nodes.”

The top image shows a flow map of migration from California from 1995 to 2010, generated automatically by their system using edge routing but no layout adjustment. The bottom image shows a map of the top ten states that migrate to California and New York, showing that New York attracts more people from the East Coast and California attracts people from more geographic regions.

http://graphics.stanford.edu/papers/flow_map_layout
CASE STUDY

AREA AND DISTANCE CARTOGRAMS

Typically, the spatial variables in the map are used to depict space in the world—the continents, countries, counties, and so on. This was the case in all map forms examined thus far. For example, choropleth maps represent thematic data within the boundaries of the given statistical units. As exemplified by the New York Times maps, the uncovered political patterns are closely associated with the administrative units used for the symbolization. Strong arguments have been made that for data involving population, such as in social and economic datasets, a topological mapping of space to space is more appropriate.

Area cartograms were devised with this purpose of revealing spatial-geographic patterns. They use the spatial variables in the map for depicting population data according to a thematic variable. To allow identification of the known geographic spaces, most area cartograms make use of algorithms that retain as closely as possible the geographic space in the transformed map space. The “Twitter Mood” cartogram is an example.

Distance cartograms use the relationships in land distance to depict thematic data in the map. The Travel Time Tube Maps by Tom Carden are good examples (see page 108).

There are different ways to render cartograms based on how space is transformed and the extents to which shape, area, and topology are preserved. “Pulse of the Nation” is an example of a contiguous cartogram. It preserves the topology of the map with the area and the shapes loosely retained. The New York Times Olympic medal map is an example of a circular noncontiguous cartogram, where original shapes are exchanged for circular shapes.

Lee Byron, Amanda Cox, and Matthew Ericso

As opposed to traditional maps, in which space is used to depict space, cartograms distort the shape of geographic regions to encode another variable into the spatial area. There are different types of cartograms, and the one used in “A Map of Olympic Medals” is called a Dorling cartogram. The technique represents geographic space as nonoverlapping circles. The map was designed by Lee Byron, Amanda Cox, and Matthew Ericso, and published as an interactive map at the New York Times online in 2012 for occasion of the London Olympic Games. The screenshots show the results for 2012. Size represents the number of medals that countries won in the Olympic Games. Color encodes the continents.

http://london2012.nytimes.com/results

“Pulse of the Nation” examines the U.S. mood throughout the day inferred from more than 300 million tweets collected between September 2006 and August 2009. The mood of each tweet was inferred using ANEW word list. User locations were inferred using the Google Maps API, and mapped into counties using PostGIS and U.S. county maps from the U.S. National Atlas. All times are Eastern Standard Time (EST). Mood colors were selected using Color Brewer (see box Selecting Color Schemes on pages 146–147). The cartograms in this work were generated using the Carto software for making cartograms developed by Mark E. J. Newman (see Newman’s cartogram of the 2012 American presidential election on page 14). The software preserves geographic shape as much as possible. Counties’ areas sizes are scaled according to the number of tweets that originate in that region. The result is a density-equalizing map. Color encodes mood by means of a color scale ranging from red (unhappy) to yellow (neutral) to green (happy).

It is possible to observe interesting trends such as daily variations, with early mornings and late evenings having the highest level of happy tweets, and geographic variations, with the West Coast showing happier tweets in a pattern that is consistently three hours behind the East Coast. The visualization was created in 2011 by an interdisciplinary research team at Northeastern University and Harvard University: Alan Mislove, Sune Lehmann, Yong-Yeol Ahn, Jukka-Pekka Onnela, and J. Niels Rosenquist.

http://www.ccs.neu.edu/home/amislove/twittermood